Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370819

ABSTRACT

Misexpression of the E3 ubiquitin ligase UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, excess genomic copies of UBE3A is thought to contribute to the autism, muscle tone and spontaneous seizures characteristic of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies. Here we directly compare the consequences of glial- and neuronal-driven dube3a expression on motor coordination and neuronal excitability in Drosophila. We utilized IowaFLI tracker and developed a hidden Markov Model to classify seizure-related immobilization. Both glial and neuronal driven dube3a expression led to clear motor phenotypes. However, only glial-driven dube3a expression displayed spontaneous immobilization events, that were exacerbated at high-temperature (38 °C). Using a tethered fly preparation we monitored flight muscle activity, we found glial-driven dube3a flies display spontaneous spike discharges which were bilaterally synchronized indicative of seizure activity. Neither control flies, nor neuronal- dube3a overexpressing flies display such firing patterns. Prior drug screen indicated bang-sensitivity in glial-driven dube3a expressing flies could be suppressed by certain 5-HT modulators. Consistent with this report, we found glial-driven dube3a flies fed the serotonin reuptake inhibitor vortioxetine and the 5HT 2A antagonist ketanserin displayed reduced immobilization and spike bursting. Together these findings highlight the potential for glial pathophysiology to drive Dup15q syndrome-related seizure activity.

2.
Res Sq ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461494

ABSTRACT

Angelman syndrome (AS) is a rare neurogenetic disorder characterized by developmental delays, speech impairments, ataxic movements, and in some cases, hyperphagic feeding behavior. Loss of function mutations, loss of expression from the maternal allele or absence of maternal UBE3A result in AS. Recent studies have established a connection between UBE3A and the mechanosensitive ion channel PIEZO2, suggesting the potential role of UBE3A in the regulation of PIEZO channels. In this study, we investigated the role of Drosophila UBE3A (Dube3a) in Piezo associated hyperphagic feeding behavior. We developed a novel assay using green fluorescent protein (GFP) expressing yeast to quantify gut distention in flies with Piezo and Dube3a mutations. We confirmed that Dube3a15b loss of function flies displayed gut distention to almost identical levels as PiezoKO flies. Further analysis using deficiency (Df) lines encompassing the Dube3a locus provided proof for a role of Dube3a in satiety signaling. We also investigated endogenous Piezo expression across the fly midgut and tracheal system. Piezo protein could be detected in both neurons and trachea of the midgut. Overexpression of Dube3a driven by the Piezo promoter resulted in distinct tracheal remodeling within the midgut. These findings suggest that Dube3a plays a key role in the regulation of Piezo and that subsequent dysregulation of these ion channels may explain the hyperphagic behavior observed in 32% of cases of AS. Further investigation will be needed to identify the intermediate protein(s) interacting between the Dube3a ubiquitin ligase and Piezo channels, as Piezo does not appear to be a direct ubiquitin substrate for UBE3A in mice and humans.

3.
Front Pediatr ; 11: 1090084, 2023.
Article in English | MEDLINE | ID: mdl-37234859

ABSTRACT

Background: Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare neurocristopathy with no known genetic or environmental etiology. Rapid-onset obesity over a 3-12 month period with onset between ages 1.5-7 years of age is followed by an unfolding constellation of symptoms including severe hypoventilation that can lead to cardiorespiratory arrest in previously healthy children if not identified early and intervention provided. Congenital Central Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have overlapping clinical features with ROHHAD and known genetic etiologies. Here we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS, and PWS) and neurotypical control subjects to identify molecular overlap that may explain the clinical similarities. Methods: Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and CCHS subjects were differentiated into neuronal cultures for RNA sequencing (RNAseq). Differential expression analysis identified transcripts variably regulated in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used previously published PWS transcript data to compare both groups to PWS patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq data and downstream protein expression analysis was performed using immunoblotting. Results: We identified three transcripts differentially regulated in all three syndromes vs. neurotypical control subjects. Gene ontology analysis on the ROHHAD dataset revealed enrichments in several molecular pathways that may contribute to disease pathology. Importantly, we found 58 transcripts differentially expressed in both ROHHAD and CCHS patient neurons vs. control neurons. Finally, we validated transcript level changes in expression of ADORA2A, a gene encoding for an adenosine receptor, at the protein level in CCHS neurons and found variable, although significant, changes in ROHHAD neurons. Conclusions: The molecular overlap between CCHS and ROHHAD neurons suggests that the clinical phenotypes in these syndromes likely arise from or affect similar transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from different molecular mechanisms. The data presented here describes important preliminary findings that warrant further validation.

4.
Nat Commun ; 14(1): 1167, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859399

ABSTRACT

Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability and atypical behaviors. AS results from loss of expression of the E3 ubiquitin-protein ligase UBE3A from the maternal allele in neurons. Individuals with AS display impaired coordination, poor balance, and gait ataxia. PIEZO2 is a mechanosensitive ion channel essential for coordination and balance. Here, we report that PIEZO2 activity is reduced in Ube3a deficient male and female mouse sensory neurons, a human Merkel cell carcinoma cell line and female human iPSC-derived sensory neurons with UBE3A knock-down, and de-identified stem cell-derived neurons from individuals with AS. We find that loss of UBE3A decreases actin filaments and reduces PIEZO2 expression and function. A linoleic acid (LA)-enriched diet increases PIEZO2 activity, mechano-excitability, and improves gait in male AS mice. Finally, LA supplementation increases PIEZO2 function in stem cell-derived neurons from individuals with AS. We propose a mechanism whereby loss of UBE3A expression reduces PIEZO2 function and identified a fatty acid that enhances channel activity and ameliorates AS-associated mechano-sensory deficits.


Subject(s)
Angelman Syndrome , Ion Channels , Linoleic Acid , Animals , Female , Humans , Male , Mice , Alleles , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Disease Models, Animal , Intellectual Disability , Ion Channels/genetics , Linoleic Acid/pharmacology
5.
Elife ; 122023 02 07.
Article in English | MEDLINE | ID: mdl-36749315

ABSTRACT

Experiments on mice suggest that an approach called antisense oligonucleotide therapy may be able to treat some symptoms of Angelman syndrome, including problems with epilepsy and sleep.


Subject(s)
Angelman Syndrome , Epilepsy , Animals , Mice , Sleep , Disease Models, Animal , Ubiquitin-Protein Ligases
6.
Clin Auton Res ; 33(3): 281-286, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36515769

ABSTRACT

INTRODUCTION: Prader-Willi syndrome is a complex neurodevelopmental genetic disorder due to lack of paternal expression of critical imprinted genes in the 15q11.2-q13.1 chromosomal region, generally from a paternal deletion. Predominant features include infantile hypotonia, a poor suck with failure to thrive, craniofacial features, and developmental and behavioral problems including self-injury and childhood onset of obesity. In addition to severe obesity, patients with PWS present with other symptoms of autonomic nervous system dysfunction. METHODS: We examined the features seen in Prader-Willi syndrome and searched the literature for evidence of autonomic nervous system involvement in this rare obesity-related disorder and illustrative findings possibly due to autonomic nervous system dysfunction. Additionally, we reviewed the literature in relation to childhood obesity syndromes and compared those syndromes to the syndromic obesity found in Prader-Willi syndrome. RESULTS: We report autonomic nervous system-related symptoms associated with childhood obesity impacting features seen in Prader-Willi syndrome and possibly other obesity-related genetic syndromes. We compiled evidence of both an autonomic route for the obesity seen in PWS and other autonomic nervous system-related dysfunctions. These include decreased salvation, sleep disordered breathing, increased pain and thermal threshold instability, delayed gastric emptying, altered blood pressure readings, and pupillary constriction responses as evidence of autonomic nervous system involvement. CONCLUSIONS: We summarized and illustrated findings of autonomic nervous system dysfunction in Prader-Willi syndrome and other obesity-related syndromes and genetic factors that may play a causative role in development.


Subject(s)
Pediatric Obesity , Prader-Willi Syndrome , Humans , Child , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/diagnosis
7.
Curr Protoc ; 2(11): e600, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36420818

ABSTRACT

A major issue in studying human neurogenetic disorders, especially rare syndromes affecting the nervous system, is the ability to grow neuronal cultures that accurately represent these disorders for analysis. Although there has been some success in generating induced pluripotent stem cells (iPSC) from both skin and blood, there are still limitations to the collection, production and use of iPSC derived neurons. We have had significant success in collecting and growing human dental pulp stem cells (DPSC) from exfoliated teeth sent directly to our laboratory by the parents of children with a variety of rare neurogenetic syndromes. This protocol outlines our current methods for the growth and expansion of DPSC from exfoliated (baby) teeth. These DPSC can be differentiated into a variety of cell types including osteoblasts, chondrocytes, and mixed neuron and glial cultures. Here we provide our protocol for the differentiation of early passage DPSC cultures into neurons for molecular and cellular studies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Collection and transportation of exfoliated teeth Basic Protocol 2: Dental pulp extraction Basic Protocol 3: Passage, freezing, and thawing of DPSC cultures Basic Protocol 4: Differentiation of DPSC into mixed neuronal cultures.


Subject(s)
Dental Pulp , Induced Pluripotent Stem Cells , Child , Humans , Cell Differentiation/physiology , Tooth, Deciduous , Neurons
8.
Front Mol Neurosci ; 14: 747855, 2021.
Article in English | MEDLINE | ID: mdl-34776864

ABSTRACT

Background: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hormonal dysregulation, obesity, intellectual disability, and behavioral problems. Most PWS cases are caused by paternal interstitial deletions of 15q11.2-q13.1, while a smaller number of cases are caused by chromosome 15 maternal uniparental disomy (PW-UPD). Children with PW-UPD are at higher risk for developing autism spectrum disorder (ASD) than the neurotypical population. In this study, we used expression analysis of PW-UPD neurons to try to identify the molecular cause for increased autism risk. Methods: Dental pulp stem cells (DPSC) from neurotypical control and PWS subjects were differentiated to neurons for mRNA sequencing. Significantly differentially expressed transcripts among all groups were identified. Downstream protein analysis including immunocytochemistry and immunoblots were performed to confirm the transcript level data and pathway enrichment findings. Results: We identified 9 transcripts outside of the PWS critical region (15q11.2-q13.1) that may contribute to core PWS phenotypes. Moreover, we discovered a global reduction in mitochondrial transcripts in the PW-UPD + ASD group. We also found decreased mitochondrial abundance along with mitochondrial aggregates in the cell body and neural projections of +ASD neurons. Conclusion: The 9 transcripts we identified common to all PWS subtypes may reveal PWS specific defects during neurodevelopment. Importantly, we found a global reduction in mitochondrial transcripts in PW-UPD + ASD neurons versus control and other PWS subtypes. We then confirmed mitochondrial defects in neurons from individuals with PWS at the cellular level. Quantification of this phenotype supports our hypothesis that the increased incidence of ASD in PW-UPD subjects may arise from mitochondrial defects in developing neurons.

9.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: mdl-32879135

ABSTRACT

Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.


Subject(s)
Antigens, Neoplasm/physiology , Hypothalamus/pathology , Neurons/pathology , Neuropeptides/metabolism , Prader-Willi Syndrome/physiopathology , Proteins/metabolism , Proteins/physiology , Secretory Vesicles/pathology , Animals , Female , Humans , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phenotype , Protein Transport , Proteins/genetics , Proteome/analysis , Proteome/metabolism , Secretory Vesicles/metabolism
10.
J Neurodev Disord ; 12(1): 22, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32791992

ABSTRACT

BACKGROUND: Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism, intellectual disability, hypotonia, and epilepsy. The 15q region harbors genes critical for brain development, particularly UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We recently described an electrophysiological biomarker of the syndrome, characterized by excessive beta oscillations (12-30 Hz), resembling electroencephalogram (EEG) changes induced by allosteric modulation of GABAARs. In this follow-up study, we tested a larger cohort of children with Dup15q syndrome to comprehensively examine properties of this EEG biomarker that would inform its use in future clinical trials, specifically, its (1) relation to basic clinical features, such as age, duplication type, and epilepsy; (2) relation to behavioral characteristics, such as cognition and adaptive function; (3) stability over time; and (4) reproducibility of the signal in clinical EEG recordings. METHODS: We computed EEG power and beta peak frequency (BPF) in a cohort of children with Dup15q syndrome (N = 41, age range 9-189 months). To relate EEG parameters to clinical (study 1) and behavioral features (study 2), we examined age, duplication type, epilepsy, cognition, and daily living skills (DLS) as predictors of beta power and BPF. To evaluate stability over time (study 3), we derived the intraclass correlation coefficients (ICC) from beta power and BPF computed from children with multiple EEG recordings (N = 10, age range 18-161 months). To evaluate reproducibility in a clinical setting (study 4), we derived ICCs from beta power computed from children (N = 8, age range 19-96 months), who had undergone both research EEG and clinical EEG. RESULTS: The most promising relationships between EEG and clinical traits were found using BPF. BPF was predicted both by epilepsy status (R2 = 0.11, p = 0.038) and the DLS component of the Vineland Adaptive Behavior Scale (R2 = 0.17, p = 0.01). Beta power and peak frequency showed high stability across repeated visits (beta power ICC = 0.93, BPF ICC = 0.92). A reproducibility analysis revealed that beta power estimates are comparable between research and clinical EEG (ICC = 0.94). CONCLUSIONS: In this era of precision health, with pharmacological and neuromodulatory therapies being developed and tested for specific genetic etiologies of neurodevelopmental disorders, quantification and examination of mechanistic biomarkers can greatly improve clinical trials. To this end, the robust beta oscillations evident in Dup15q syndrome are clinically reproducible and stable over time. With future preclinical and computational studies that will help disentangle the underlying mechanism, it is possible that this biomarker could serve as a robust measure of drug target engagement or a proximal outcome measure in future disease modifying intervention trials.


Subject(s)
Epilepsy , Intellectual Disability , Child , Child, Preschool , Electroencephalography , Follow-Up Studies , Humans , Infant , Reproducibility of Results
11.
Biol Psychiatry ; 88(9): 698-709, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32507391

ABSTRACT

BACKGROUND: Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS: We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS: We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS: Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.


Subject(s)
Pharmaceutical Preparations , Serotonin , Animals , Chromosomes, Human, Pair 15 , Dopamine , Female , Male , Seizures/drug therapy , Seizures/genetics , Trisomy
12.
Neurobiol Dis ; 141: 104879, 2020 07.
Article in English | MEDLINE | ID: mdl-32344153

ABSTRACT

Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.


Subject(s)
Drosophila Proteins/metabolism , Epilepsy/metabolism , Neuroglia/metabolism , Neurons/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Chromosomes, Human, Pair 15/metabolism , Disease Models, Animal , Drosophila melanogaster , Gene Expression Profiling , Humans , Proteome , Proteomics , Transcriptome , Trisomy
13.
Am J Med Genet A ; 182(1): 71-84, 2020 01.
Article in English | MEDLINE | ID: mdl-31654560

ABSTRACT

Duplication of 15q11.2-q13.1 (dup15q syndrome) is one of the most common copy number variations associated with autism spectrum disorders (ASD) and intellectual disability (ID). As with many neurogenetic conditions, accurate behavioral assessment is challenging due to the level of impairment and heterogeneity across individuals. Large-scale phenotyping studies are necessary to inform future clinical trials in this and similar ID syndromes. This study assessed developmental and behavioral characteristics in a large cohort of children with dup15q syndrome, and examined differences based on genetic subtype and epilepsy status. Participants included 62 children (2.5-18 years). Across individuals, there was a wide range of abilities. Although adaptive behavior was strongly associated with cognitive ability, adaptive abilities were higher than cognitive scores. Measures of ASD symptoms were associated with cognitive ability, while parent report of challenging behavior was not. Both genetic subtype and epilepsy were related to degree of impairment across cognitive, language, motor, and adaptive domains. Children with isodicentric duplications and epilepsy showed the greatest impairment, while children with interstitial duplications showed the least. On average, participants with epilepsy experienced seizures over 53% of their lives, and half of children with epilepsy had infantile spasms. Parents of children with isodicentric duplications reported more concerns regarding challenging behaviors. Future trials in ID syndromes should employ a flexible set of assessments, allowing each participant to receive assessments that capture their skills. Multiple sources of information should be considered, and the impact of language and cognitive ability should be taken into consideration when interpreting results.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Copy Number Variations/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Adolescent , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Chromosome Aberrations , Chromosome Duplication/genetics , Chromosomes, Human, Pair 15/genetics , Cohort Studies , Epilepsy/pathology , Female , Humans , Intellectual Disability/pathology , Male , Pedigree
15.
Front Genet ; 10: 574, 2019.
Article in English | MEDLINE | ID: mdl-31316544

ABSTRACT

Major challenges to identifying genes that contribute to autism spectrum disorder (ASD) risk include the availability of large ASD cohorts, the contribution of many genes overall, and small effect sizes attributable to common gene variants. An alternative approach is to use a model organism to detect alleles that impact ASD-relevant behaviors and ask whether homologous human genes infer ASD risk. Here we utilized the Drosophila genetic reference panel (DGRP) as a tool to probe for perturbation in naturally occurring behaviors in Drosophila melanogaster that are analogous to three behavior domains: impaired social communication, social reciprocity and repetitive behaviors or restricted interests. Using 40 of the available DGRP lines, we identified single nucleotide polymorphisms (SNPs) in or near genes controlling these behavior domains, including ASD gene orthologs (neurexin 4 and neuroligin 2), an intellectual disability (ID) gene homolog (kirre), and a gene encoding a heparan sulfate (HS) modifying enzyme called sulfateless (sfl). SNPs in sfl were associated with all three ASD-like behaviors. Using RNAi knock-down of neuronal sfl expression, we observed significant changes in expressive and receptive communication during mating, decreased grooming behavior, and increased social spacing. These results suggest a role for HS proteoglycan synthesis and/or modification in normal social communication, repetitive behavior, and social interaction in flies. Finally, using the DGRP to directly identify genetic effects relevant to a neuropsychiatric disorder further demonstrates the utility of the Drosophila system in the discovery of genes relevant to human disease.

16.
Mol Autism ; 10: 29, 2019.
Article in English | MEDLINE | ID: mdl-31312421

ABSTRACT

Background: Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods: To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results: Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions: Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.


Subject(s)
Biomarkers/metabolism , Electroencephalography , Intellectual Disability/diagnostic imaging , Adult , Child , Chromosome Aberrations , Chromosomes, Human, Pair 15 , Cohort Studies , Fathers , Female , Humans , Intellectual Disability/drug therapy , Male , Midazolam/administration & dosage , Midazolam/therapeutic use , Phenotype , Receptors, GABA-A/metabolism
17.
Sci Rep ; 9(1): 2382, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787400

ABSTRACT

The genetics underlying autism spectrum disorder (ASD) are complex. Approximately 3-5% of ASD cases arise from maternally inherited duplications of 15q11.2-q13.1, termed Duplication 15q syndrome (Dup15q). 15q11.2-q13.1 includes the gene UBE3A which is believed to underlie ASD observed in Dup15q syndrome. UBE3A is an E3 ubiquitin ligase that targets proteins for degradation and trafficking, so finding UBE3A substrates and interacting partners is critical to understanding Dup15q ASD. In this study, we take an unbiased genetics approach to identify genes that genetically interact with Dube3a, the Drosophila melanogaster homolog of UBE3A. We conducted an enhancer/suppressor screen using a rough eye phenotype produced by Dube3a overexpression with GMR-GAL4. Using the DrosDel deficiency kit, we identified 3 out of 346 deficiency lines that enhanced rough eyes when crossed to two separate Dube3a overexpression lines, and subsequently identified IA2, GABA-B-R3, and lola as single genes responsible for rough eye enhancement. Using the FlyLight GAL4 lines to express uas-Dube3a + uas-GFP in the endogenous lola pattern, we observed an increase in the GFP signal compared to uas-GFP alone, suggesting a transcriptional co-activation effect of Dube3a on the lola promoter region. These findings extend the role of Dube3a/UBE3A as a transcriptional co-activator, and reveal new Dube3a interacting genes.


Subject(s)
Autism Spectrum Disorder/genetics , Drosophila Proteins , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Genes, Suppressor , Intellectual Disability/genetics , Receptors, GABA-B , Ubiquitin-Protein Ligases/physiology , Animals , Chromosome Aberrations , Chromosomes, Human, Pair 15/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Epistasis, Genetic/genetics , Genome-Wide Association Study/methods , Humans , Receptor-Like Protein Tyrosine Phosphatases, Class 8/genetics , Receptors, GABA-B/genetics , Receptors, GABA-B/physiology , Transcription Factors/genetics , Transcriptional Activation/genetics , Ubiquitin-Protein Ligases/genetics
18.
Mol Autism ; 9: 6, 2018.
Article in English | MEDLINE | ID: mdl-29423132

ABSTRACT

Background: The inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level. Method: Here, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to AS neurons, 120 genes unique to 15q duplication, and 3 shared transcripts that were differentially expressed in DPSC neurons vs controls. Results: Copy number correlated with gene expression for most genes across the 15q11.2-q13.1 critical region. Two thirds of the genes differentially expressed in 15q duplication neurons were downregulated compared to controls including several transcription factors, while in AS differential expression was restricted primarily to the 15q region. Here, we show significant downregulation of the transcription factors FOXO1 and HAND2 in neurons from 15q duplication, but not AS deletion subjects suggesting that disruptions in transcriptional regulation may be a driving factor in the autism phenotype in Dup15q syndrome. Downstream analysis revealed downregulation of the ASD associated genes EHPB2 and RORA, both genes with FOXO1 binding sites. Genes upregulated in either Dup15q cortex or idiopathic ASD cortex both overlapped significantly with the most upregulated genes in Dup15q DPSC-derived neurons. Conclusions: Finding a significant increase in both HERC2 and UBE3A in Dup15q neurons and significant decrease in these two genes in AS deletion neurons may explain differences between AS deletion class and UBE3A specific classes of AS mutation where HERC2 is expressed at normal levels. Also, we identified an enrichment for FOXO1-regulated transcripts in Dup15q neurons including ASD-associated genes EHPB2 and RORA indicating a possible connection between this syndromic form of ASD and idiopathic cases.


Subject(s)
Angelman Syndrome/genetics , Chromosome Deletion , Neural Stem Cells/metabolism , Transcriptome , Trisomy/genetics , Angelman Syndrome/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 15/metabolism , Dental Pulp/cytology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Hum Mol Genet ; 27(4): 691-705, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29300972

ABSTRACT

UBTF (upstream binding transcription factor) exists as two isoforms; UBTF1 regulates rRNA transcription by RNA polymerase 1, whereas UBTF2 regulates mRNA transcription by RNA polymerase 2. Herein, we describe 4 patients with very similar patterns of neuroregression due to recurrent de novo mutations in UBTF (GRCh37/hg19, NC_000017.10: g.42290219C > T, NM_014233.3: c.628G > A) resulting in the same amino acid change in both UBTF1 and UBTF2 (p.Glu210Lys [p.E210K]). Disease onset in our cohort was at 2.5 to 3 years and characterized by slow progression of global motor, cognitive and behavioral dysfunction. Notable early features included hypotonia with a floppy gait, high-pitched dysarthria and hyperactivity. Later features included aphasia, dystonia, and spasticity. Speech and ambulatory ability were lost by the early teens. Magnetic resonance imaging showed progressive generalized cerebral atrophy (supratentorial > infratentorial) with involvement of both gray and white matter. Patient fibroblasts showed normal levels of UBTF transcripts, increased expression of pre-rRNA and 18S rRNA, nucleolar abnormalities, markedly increased numbers of DNA breaks, defective cell-cycle progression, and apoptosis. Expression of mutant human UBTF1 in Drosophila neurons was lethal. Although no loss-of-function variants are reported in the Exome Aggregation Consortium (ExAC) database and Ubtf-/- is early embryonic lethal in mice, Ubtf+/- mice displayed only mild motor and behavioral dysfunction in adulthood. Our data underscore the importance of including UBTF E210K in the differential diagnosis of neuroregression and suggest that mainly gain-of-function mechanisms contribute to the pathogenesis of the UBTF E210K neuroregression syndrome.


Subject(s)
Mutation, Missense/genetics , Pol1 Transcription Initiation Complex Proteins/genetics , Child, Preschool , Dysarthria/genetics , Female , Gait Ataxia/genetics , Humans , Magnetic Resonance Imaging , Male , Muscle Hypotonia/genetics , Pedigree , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...